ALZHEIMER'S (N) ASSOCIATION ALZHEIMER'S DISEASE – SYSTEMS BIOLOGY

<u>Title</u>: "Drug Development Approach and Mechanism of Action of T3D-959"

Presenter: John, Didsbury, Ph.D., Founder and CEO of T3D Therapeutics, Inc.

Lead Product / Mechanism of Action: T3D-959; small molecule nuclear receptor agonist of PPAR delta (primary) and PPAR gamma (secondary)

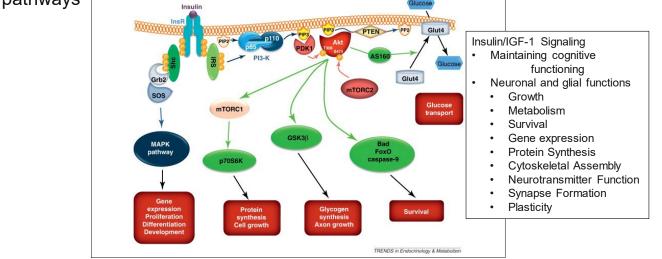
<u>Stage of Development</u>: Phase 2 PIONEER study ongoing in mild to moderate AD subjects with topline results in early 2Q2023

<u>AD Drug Development Approach</u>: Correcting dysfunctional glucose and lipid metabolism

AAIC>22 POLICIES

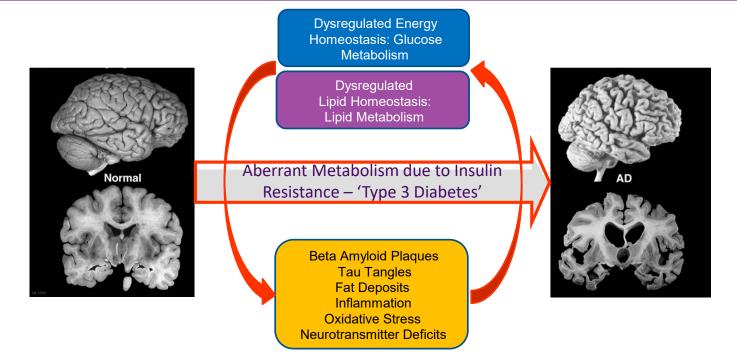
The information included in this presentation may be shared on other platforms.

ALZHEIMER'S RUASSOCIATION AAIC 22 DISCLOSURES

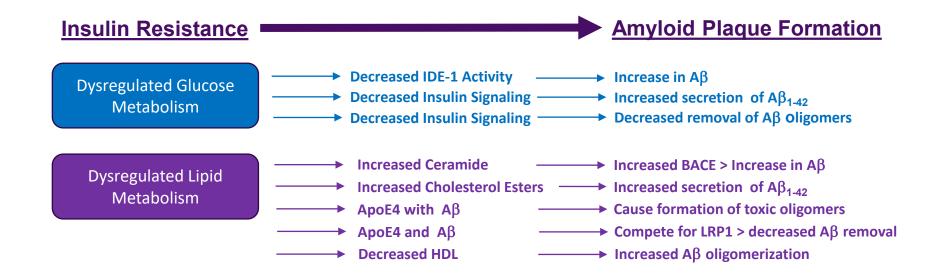

- ✤ John Didsbury is a shareholder in T3D Therapeutics, Inc.
- PIONEER is supported in part by grant AG-061122 from the National Institutes of Health (NIA/NIH)
- PIONEER is supported in part by a grant from the Alzheimer's Association – Part the Cloud-Gates Foundation Program

ALZHEIMER'S () ASSOCIATION ALZHEIMER'S () ASSOCIATION METABOLIC HYPOTHESIS OF AD – 4 TENETS

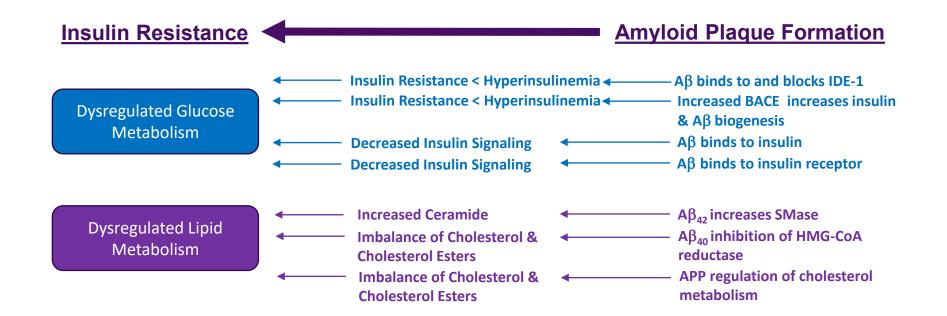
- 1. Metabolism function alterations (glucose and lipid) antedate structural change in AD brain The brain is the most metabolically active organ in the body. An organ of 2% body weight uses:
 - 25% of total glucose
 - 25% of total body free cholesterol pool
 - 20% of whole body oxygen consumption
- 2. Decreased glucose metabolism is a cause not a consequence of neurodegeneration
 - Decreased Glucose > decreased ATP> decreased ER/Golgi/Trans Golgi function (ER stress) > misfolded proteins (tangles and plaques)
- **3.** Aberrant lipid metabolism a 3rd pathological hallmark of AD, impacts structure and function. The brain is half lipid.
 - Alois Alzheimer (1906) noted a high occurrence of "adipose inclusions" (fat deposits identified as triglycerides in 2015)
 - ApoE4 strongest genetic risk factor
- 4. AD involves a massive positive feedback loop of altered glucose/lipid metabolism alterations and pathological sequelae It is not a simple pyramid of cascading events.


ALZHEIMER'S (3) ASSOCIATION ALZ) 22 METABOLIC APPROACH TO AD THERAPY DEVELOPMENT

- 1. Focus on the single most important regulator of brain functions Insulin
- 2. Correct resistance to this regulator which is inherent in AD and precedes AD symptoms
- 3. Systems Biology Use a pluripotential drug target that can bypass multiple dysfunctional insulin signaling pathways

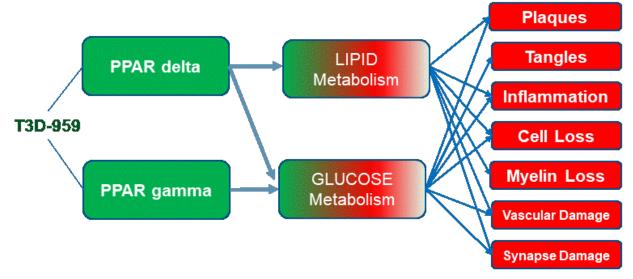

References: de la Monte SM (b). Brain Insulin Resistence and Deficiency as Therapeutic Targets in Alzheimer's Disease. Curr Alzheimer Res 2012;9:35-66. 39. D'Ercole AJ, Ye P. Expanding the mind: insulin-like growth factor I and brain development. Endocrinology 2008;149:5958-5962.

ALZHEIMER'S NO ASSOCIATION ALZHEIMER'S NO ASSOCIATION ALZHEIMER'S NO ASSOCIATION METABOLIC HYPOTHESIS OF AD – 'TYPE 3 DIABETES' CAUSING BRAIN 'STARVATION'



Massive Positive Feedback Loop Driving Neurodegeneration

ALZHEIMER'S OF AD IS CONGRUENT METABOLIC HYPOTHESIS OF AD IS CONGRUENT WITH THE PLAQUE HYPOTHESIS


ALZHEIMER'S () ASSOCIATION ALZHEIMER'S () ASSOCIATION METABOLIC HYPOTHESIS OF AD IS CONGRUENT WITH THE PLAQUE HYPOTHESIS

ALZHEIMER'S (1) ASSOCIATION ALZHEIMER'S (1) ASSOCIATION METABOLIC HYPOTHESIS TESTING WITH T3D-959 – MECHANISM OF ACTION

T3D-959: Dual Nuclear Receptor Agonist

Primary Target is PPAR δ (delta), Secondary Target is PPAR γ (gamma); regulating expression of multiple genes involved in glucose and lipid metabolism. PPAR δ (energy expenditure) and PPAR γ (energy storage) are master regulators of metabolic homeostasis

ALZHEIMER'S () ASSOCIATION T3D-959 – MECHANISM OF ACTION IN AD -

<mark>Impaired Glucose Metabolism> Insulin resistance –</mark> PPAR delta/gamma>↑ Insulin receptors, ↑ IRS-1, ↑ GLP-1, ↑ AMPK, activates AKT pathway, ↑ GLUT4

- A. Energy blockade (mitochondrial dysfunction) PPAR delta/gamma > ↑ PGC1-a for mitochondrial biogenesis & oxidative capacity ↑ catalase, SOD1 & glutathione
- B. Altered posttranslational modifications (glycosylation, phosphorylation, ubiquitination, methylation) > ER stress > misfolded proteins that lead to:
- B1. Inflammation > JNK pathway activation, NF_KB activation -

PPAR delta/gamma > \downarrow JNK pathway & NF κ B activation, \downarrow AGEs, \uparrow Adiponectin

B2. Structure/Function deficiencies >Lipid Metabolism > Cholesterol forms imbalance, toxic ceramides, altered sphingolipids, decreased myelin –

PPAR delta/gamma > \uparrow reverse cholesterol transport, fatty acid oxidation & HDL, \downarrow ceramides \downarrow triglycerides, \uparrow myelination

B3. Amyloid Plaques >

PPAR delta/gamma > \downarrow BACE1, \uparrow Neprilysin & IDE-1, \uparrow ABCA1, Microglia shift to M2

B4. Tau Tangles >

PPAR delta/gamma > \downarrow tau hyperphosphorylation

ALZHEIMER'S () ASSOCIATION TRANSLATION OF SYSTEMS BIOLOGY TO THE CLINIC – ADAS-COG11 BLINDED PIONEER DATA

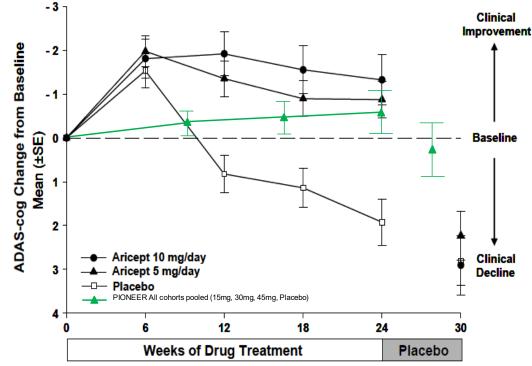
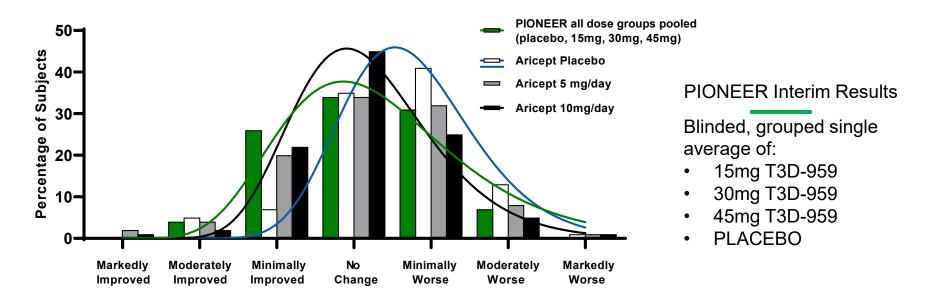


Figure 1. Time-course of the Change from Baseline in ADAS-cog Score for Patients Completing 24 Weeks of Treatment.


PIONEER Interim Results

Blinded, grouped single average of:

- 15mg T3D-959
- 30mg T3D-959
- 45mg T3D-959
- PLACEBO

ALZHEIMER'S TRANSLATION OF SYSTEMS BIOLOGY TO THE CLINIC – ADCS-CGIC BLINDED PIONEER DATA

PIONEER CGIC vs. Aricept CIBIC+

ALZHEIMER'S RY ASSOCIATION AAIC 22 SUMMARY

- Complex Organ
- Complex Disease
- Will require a complex systems biology approach for discovering efficacious new therapies
- AD is too complex for one-off single pathology-specific targets